Headlands Primary School
Subtraction Policy and Methods

(

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Y \\
e \\
a \\
r \\
1 \\
\\
\\
\\
\\
\hline
\end{tabular} \& \begin{tabular}{l}
Add and subtract one-digit and two-digit numbers to 20 , including zero \\
Read, write and interpret mathematical statements involving addition (+), subtraction \((-)\) and equals (=) signs
\end{tabular} \& \begin{tabular}{l}
Read, write and interpret mathematical statements involving addition (+), subtraction \((-)\) and equals (=) signs \\
Solve problems with addition and subtraction: \\
using concrete objects and pictorial representations, including those involving numbers, quantities and measures
\end{tabular} \& \begin{tabular}{l}
Complete the number sentence.

\qquad \\
Use counters/cubes to help you solve and complete: \\
26 \\
Children count backwards to subtract. It is an important step to help children work in the abstract. \\
It is vital to model how to count backwards by 'putting the start number in our head and counting backwards'. \\
$7-3=$ \qquad

$$
20-7=
$$

\end{tabular} \\

\hline
\end{tabular}

Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot

$12-5=$

Teaching needs to focus on the importance of the tensdigit. Using a 100 square, explore with the children what happens to the numbers in thecolumns.

Continue the number tracks below.

(10)

	Add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	Partitioned column method (Expanded method) Use Base 10/place value counters to support understanding. Step 1: Only solve calculations that do not cross the tens boundary, until children are secure with the method. Step 2: Solve calculations that do cross the tens boundary, starting by doing it practically using base ten and place value counters. The children need to be proficient in partitioning 2 digit numbers into different multiples of ten and 1 or 2 digit numbers to move on to the recorded partitioned column method with exchanging. $41-26$ Step 3: Once children are secure with exchanging, they can move on to calculations involving 3 digit numbers. Children should be reminded of the importance of aligning the columns accurately. Example: 741-367

Column method using place value counters
234-88

Represent the place value counters pictorially; remembering to show what has been exchanged

Expanded method leading to column method

Use Base 10 and place value counters to support understanding of decomposition and place value.

